Second Year Second Semester

Cours	se code	EE/PC/B/T/221		
Categ	gory	Program Core		
Cours	se title	Electrical Instrumentation		
Scher	ne and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-r	equisites (if any)			
EE/P	C/B/T/221 : Electrical Instrumer	itation	L	Т
Trans	ducers: Recapitulation of prelimina	aries.		
Linea	r Variable Differential Transducer	s (LVDTs). Null reduction techniques. Phase	3	1
comp	ensation circuits. Phase sensitive d	emodulation. Synchronous demodulation.		
Capac	citive transducers: variable air gap,	variable plate overlap, variable dielectric.		
Level	gauge. Thickness gauge. Humidity	y sensor. Capacitive microphone. Signal	2	1
condi	tioning circuits for capacitive trans	ducers: reactive bridges, transformer ratio	3	1
bridge	es, multivibrator circuits, op-amp b	based circuits.		
Pressu	are transducers: Primary sensing	elements: Diaphragms, Bourdon tube,		0
diaph	ragm, bellows. Capacitive pressure	e sensor and other electronic pressure gauges.	2	0
Piezo	electric transducers. Fundamental	concepts, materials, charge sensitivity,		
voltag	ge sensitivity. Force/displacement t	ransducers. Buffer amplifiers, charge	2	1
ampli	fiers. Static and dynamic response	s. Accelerometers.		
Hot w	vire anemometers: constant-current	and constant temperature varieties for		
measu	rement of static and dynamic flow	7.	4	1
Electr	romagnetic flowmeters: dc, ac and	interrupted dc excitation for magnet system.	4	1
Ultras	sonic transit-time flowmeters: wet	ted and nonwetted varieties.		
Radia	tion pyrometers: Stefan-Boltzman	n law and Planck's law. Total radiation	2	0
	neter. Disappearing filament system		2	0
		chniques: Butterworth, Chebyshev.		
Realiz	zation of Active Filter circuits. Stat	te-variable filter. Switched capacitor filter	6	3
circui	ts.			
	• •	d register, R-2R ladder. DAC characteristics		
-		ccessive-approximation, Dual-slope, Delta-	4	3
-	. ADC codes and errors.			
	form display devices & application	ns: CRT, LCD, LED. PLL and its	3	1
applic	ations.		5	1
D	D. L.			
	ence Books:	ion and Dasian, Dashalin		
1	Measurement Systems-Applicati	-		
2	Transducers and Instrumentation	-		
3 4	Principles of Measurement Syste	-		
4 5	Operational Amplifiers: Clayton Instrument Transducers: Neuber			
3	Instrument Transducers: Neuber	l		

- 6 Principle of Industrial Instrumentation: Patranabis
- 7 Electronic Data Converters: Anvekar & Sonde
- 8 Analog and Digital Filters: Design and Realization. H. Y. F. Lam
- 9 Passive and Active Filters: Theory and Implementations: W. K. Chen
- 10 Digital Principles & Applications : Malvino & Leach
- 11 Modern Electronic Instrumentation & Measurement Techniques : Helfrick & Cooper
- 12 Principles of Electronic Instrumentation: D. Patranabis
- 13 Data conversion handbook, Analog Devices Inc., Elsevier.

Content Delivery Method

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

CO1	Describe operations of various display devices used in electrical instrumentation. (K1)
CO2	Describe the operating principles of various transducers. (K2)
CO3	Discuss operating principles and applications of PLL, switched capacitor and state
	variable filter circuits. (K2)
CO4	Solve numerical problems on various errors of different types of data converters.(K3)
CO5	Analyze the signal conditioning circuits for different types of sensors. (K4)
CO6	Deduce various active filter circuits based on filter approximation techniques. (K4)

CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)

CO-TO Mapping (5 Shong, 2 Moderate and 1 Weak)													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3				1							
Electrical	CO2	3											
Instrumentation	CO3	3											
mstrumentation	CO4	3	2										
	CO5	2	3	2	1								
	CO6	2	3	2									

Course code	EE/PC/B/T/222		
Category	Program Core		
Course title	Electrical Machines - II		
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-requisites (if any)			
EE/PC/B/T/222 : Electrical Mach	nines - II	L	Т
M.M.F. distribution of poly pha	se distributed winding subjected to poly phase	2	1
excitation; Winding factors of distr	ibuted winding;	2	1
Production of rotating magnetic fi	eld. Induced e.m.f& its frequency: relationship to		
no. of poles; synchronous speed; s	slip, slip speed and slip frequency, mechanical and	2	0
electrical angles. Types of ac mach	ine windings.		
Three-phase induction motor: Cor	nstruction of IM and materials used. Squirrel cage	2	0
and Wound-rotor/Slip-ring rotor co	onstruction.	Z	0
Operating principle; slip. Per-phase	e equivalent circuit. Phasor diagram.		
Equations for torque. Torque-spee	d & torque-slip characteristics. Effect of change in	2	2
rotor resistance in slip-ring machine	e and slip power recovery.		
Deep bar and Double cage rotor. P	ole changing motor. Methods of starting and speed	2	1
control.		Z	1
No-load and blocked rotor test : de	termination of equivalent circuit parameters.	2	1
Separation of losses. Circle diagram	n.	2	1
Space harmonics : Crawling & cog	ging	1	0
Tests as per standards.		1	0
Operation of the induction machine	e as a generator.	1	0
Polyphase Transformer: Construct	ion and basic principle of operation. Core type 3-		
limb & 5-limb construction and s	shell type and three phase transformer bank. Flux	1	1
distributions in different construction	ons.		
Polyphase connections: Star, Del	ta and Inter-connected star/ zig-zag connections.	3	1
Vector groups. Significance of vect	or groups in parallel operation.	5	1
Special connections: T connection	n. Phase shifting connections. Scott and Le-Blanc		
connections, 3-phase to 1-phase	transformation. Open Delta and reverse delta	3	1
connections. Three-phase auto-tran	sformers: different connections.		
Harmonics in Transformers: Orig	gin of harmonics, behavior of transformers with	2	1
different connections and different		4	
Tertiary windings: its requirement	and equivalent circuit.	1	1
Tap changer principles: OFF-load a	and On-load types, reactor and resistor types.	2	0
Impulse on transformers, Graded in	sulation and shielding for HV.	1	1
Tests as per standards.		1	0

Refere	nce Bool	ks:												
1	AC Mac	hines :	Puchst	ein, L	loyd &	Hunte	;							
2	Perform	Performance and Design of Alternating Current Machines: M. G. Say Principles of Alternating Current machinery: Lawrence												
3	Principle	Principles of Alternating Current machinery: Lawrence Electrical machines: P.K. Mukherjee & S. Chakravorti												
4	Electrica	al machi	ines: P	.K. M	ukherje	e & S.	Chak	ravort	i					
5	Electrica	al Mach	inery :	P. S. 2	Bimbh	ra								
6	Electrica	al Mach	inery :	S. K.	Sen									
7	Generali	ised The	eory of	Elect	rical M	lachine	s : P. 1	S. Bin	nbhra					
8	Electrica	al Mach	inery :	A. E.	Fitzger	rald &	C. Kii	ngsley						
9	J & P T1	ansforn	ner Ha	ndboo	k									
Conto	nt Delive	w Mat	had											
		•		a 11 a ara		J) (D1)	`							
•	Class roo				u doard	1) (D1)							
•	Visual p		10n (D	2)										
•	Tutorial	. ,												
•	Discussi	on (D7)												
	e Outcon													
The stu	idents of													
CO1		ibe the l	_	rincip	les of c	operation	on of t	hree p	hase to	ransfo	rmer a	nd indu	ction	
	machi	ne. (K1))											
CO2	Discus	ss the co	onstruc	tions of	of three	e phase	e transi	formei	and in	nducti	on ma	chine. (K2)	
CO3	Devel	o p equiv	valent	circuit	s for th	ree ph	ase tra	ansfori	ner an	d indu	ction	machine	e. (K3)	
CO4	Analy	ze vario	ous per	forma	nce cha	aracter	istics o	of thre	e phas	e trans	forme	r and ir	nduction	L
	machi	ne. (K4))											
CO5	Solve	numeric	cal pro	blems	related	l to var	ious a	spects	of thr	ee pha	se trar	nsforme	r and	
	induct	ion mac	hine. ((K3)										
	1													
CO-PO) Mappi	ng (3 –	Strong	g, 2 - N	Aodera	te and	1 – W	'eak)						
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		CO1	3	2										
	ctrical	CO2	3	2	1				1					
Macł	nines - II	CO3	2	2	3									
		CO4 CO5	2 2	2 2	3									
		005	4	4	3									

Cour	se code	EE/PC/B/T/223		
Cate	gory	Program Core		
Cour	rse title	Power Supply Systems		
Sche	me and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-r	requisites (if any)			
EE/P	C/B/T/223 : Power Supply Syste	ems	L	Т
	ture of Power System – Gener rating stations – different types.	ration, transmission and distribution. Power	1	0
chara stearr	cteristics. Characteristics of steam	and working, types of boilers and their turbines and alternators. Main flow circuits of iliaries, cooling system of alternators. Starting l units.	6	2
	urbine power stations- Main par bined cycle generation & Co-gener	rts, plant layout and Bryton cycle operation.	3	1
		clear power station, types of power reactors, ear waste disposal, radioactivity and hazards.	2	1
of w		d location of hydroelectric stations, principles heir characteristics, Pumped storage plants. ower stations.	4	1
Subst layou		ons, Major equipment in Substation, Busbar	2	0
	r distribution system: Primary and bution system, comparison of distr	l secondary distribution, types of conductors in ribution systems.	4	1
	ibutor design, radial and ring butor, economics of feeder design.	main, current and voltage profiles along a	4	2
	rical wiring and installation - I ation of main, submain and subcir	Domestic, commercial and industrial wiring, cuit wiring.	3	0
	ing practice. Testing of installation and disconnecting devices.	on. Special lighting connections. Conductors,	3	0
Refe	rence Books:			
1	Power plant Technology: M. M.	El-Wakil, McGraw Hill		
2	1 01	onomy: B. G. A. Skrotzki & W. A. Vopat, Tata I	McGra	w Hil
3		ering: Arora & Domkundwar, Dhanpat Rai		
4		tion Design: M. V. Deshpande, Wheeler		
	Flectric Power Distribution Syste	em Engineering: Turan Gonen		
5	Licenie i ower Distribution Syste			

Content Delivery Method

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

The stu						-									
CO1	Discuss	Discuss/ describe the basic principles of operation of conventional power generating													
	stations	. (K2)													
CO2	Discuss	Discuss and clarify domestic, commercial and industrial wiring and installation. (K2)													
CO3	Classify	Classify substation and identify major equipment in a substation, (K4)													
CO4	Explain	Explain the principle of feeder design. (K2)													
CO5	Calcula	Calculate the current loading and voltage drop in different types of distributors. (K3)													
CO-PC) Mappi	ng (3 –	Strong	g, 2 – 1	Modera	ate and	l 1 – V	Veak)							
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
		CO1	3	2				1	1						
Power	Supply	CO2	3					2		2					
Sys	tems	CO3	1	2	3										
		CO4	1	2	3										
		CO5	1	2	3	2									

Course code	EE/PC/B/T/224						
Category	Program Core						
Course title	Digital Signal Processing						
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;						
Pre-requisites (if any)							
	· · · · · · · · · · · · · · · · · · ·						
EE/PC/B/T/224: Digital Signal Pr	ocessing	L	Т				
Analog Signal Processing vers	us Digital Signal Processing. Sampling and						
Aliasing. Frequency domain repre	sentation of uniformly-sampled signals. Anti-alias	2	1				
filter.							
Different types of sequences - Caus	al, anticausal and noncausal (two-sided) sequences.						
Odd and even sequences. Power a	and energy sequences. Time-domain operation on	1	1				
sequences – convolution and correla	ation.						
Z-transform and its properties. ROC	Cs of Z-transforms. Mapping between z-plane and s-	2	1				
plane, Discrete-Time Fourier Trans	form. Inverse Z-transform.	3	1				
Discrete-Time LTI systems. Imp	ulse response of DTLTI systems. Convolution						
representation. Recursive and Non-	recursive systems. FIR and IIR systems. Z-transfer	3	1				
function and frequency response.							
Introduction to the Discrete Fouri	er transform (DFT): Fourier series for a periodic						
signal, Fourier series for a period	lic discrete sequence, Discrete Fourier Transform	•					
(DFT), Inverse Discrete Fourier T	ransform (IDFT). Properties of DFT: periodicity,	2	1				
linearity, symmetry. Circular convo	lution. Computation of DFT.						
Fast Fourier Transforms (FFT): radix	-2 decimation in frequency in-place FFT algorithm. 4-						
point FFT and 8-point FFT. Compariso	on of DFT and FFT. Applications of FFT. Introduction to	2	1				
the Discrete Cosine transform (DCT).							
0	ansmission of signal through a filter: linear phase						
· · ·	lelay and group delay. Linear phase digital filter.	1	1				
Properties of linear phase digital filter:							
0 0 0	Series method. Frequency response of digital filters,						
-	ation of linear phase FIR digital filters, effect of	2	1				
	circular complex convolution integral, Gibb's						
phenomenon.							
	sign of linear phase FIR filters: Bartlett, Hamming,						
	omain characteristics of common window functions.	1	1				
	high pass, band pass FIR digital filters.						
	s by the frequency sampling method. Design of	1	1				
optimum equiripple linear phase FII		-	-				
	sis of one-dimensional and two-dimensional data. 2-	2	0				
D finite impulse sequence of FIR fil	-	0					
Design of IIR filters by discretizing analog filters. Impulse invariant transformation,							
Bilinear Transformation, Mapping of	of differentials, Matched Z-transform. Structures for	3	1				

			<u> </u>
IIR filte	rs – Direct realizations, Cascade realization, Transposed Structures.		
Ideal In	terpolation Formula for reconstructing analog signals from their samples. DAC	1	0
employi	ing zero-order hold.	1	0
Finite w	ord length effects in digital IIR filters.	1	0
Introduc	ction to image processing: gray image as a two-dimensional continuous		
functior	n of space. Image filtering: a two-dimensional filtering problem, FIR image	1	1
filters f	for low pass and high pass filtering. Contrast enhancement by histogram	1	1
equaliza	ation.		
Digital	signal processors. Processor architecture: Von Neumann architecture, Harvard		
architec	ture, modified Harvard architecture. TMS320C25 processor: architecture,	2	0
multiply	//accumulate operation, benchmarks.		
Referer	nce Books:		
1	Digital Signal Processing: Principles, Algorithms & Applications: J. G. Proakis a	nd M.	G.
	Manolakis.		
2	Signals and Systems: Simon Haykin and Barry Van Veen		
3	Network Analysis and Synthesis: M. E. Van Valkenburg		
4	Principles of Linear Systems and Signals (International Version): B. P. Lathi		
5	Discrete-Time Signal Processing: Oppeinham, Schaffer and Buck		
6	Digital Signal Processing: P. Ramesh Babu		
7	Digital Signal Processing: T. K. Rawat		
8	Digital Signal Processing: J. R. Johnson		
9	Digital Signal Processing: Spectral Computation and Filter Design: Chi-Tsong C	hen	
10	Digital Image Processing: Gonzalez and Woods.		
Conten	t Delivery Method		
•	Class room lecture (chalk and board) (D1)		
•	Visual presentation (D2)		
•	Tutorial (D3)		
•	Discussion (D7)		
•			
Course	Outcomes:		
The stu	dents of the course should be able to		
CO1	Describe the basic principles, properties and applications of uniform sampling p	process	, Z-
	transform, discrete-time Fourier Transform (DTFT), Discrete Fourier Transform	n (DFT) and
	Fast Fourier Transform (FFT). (K1)		
CO2	Illustrate the basic principles, properties and applications of Discrete-time LTI	system	ns,
	one-dimensional and two-dimensional Finite Impulse Response (FIR) and Infinite	ite Imp	ulse
	Response (IIR) digital filters, and digital signal processors. (K2)		
CO3	Apply DFT and digital filters for one-dimensional and two-dimensional signal p	process	ing
	for engineering problems. (K3)		
CO4	Solve problems for designing FIR and IIR filters. (K3)		

t	o-analo	og cor	nverte	rs. (K	4)											
	CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)															
CO-PO N	Tappin	_		-												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Digital	CO1	3	1													3
Signal	CO2	3	1													3
Processing	CO3	2	3	2	1											3
	CO4	2	3	2	1											3
	CO5	2	3	1	2											3

Course code	EE/PC/B/T/225				
Category	Program Core				
Course title	Sequential Systems & Microprocessors				
Scheme and Credits	L-T-P: 3-0-0; Credits: 3.0;				
Pre-requisites (if any)					
	l				
EE/PC/B/T/225 : Sequential Systems	& Microprocessors	L	Т		
Sequential Circuits. State machines an	d State diagrams. Present State Table, Next	2	0		
State Table.	-	2	0		
Concepts of Synchronous, Asynchrono	us, Linear Sequential Machine. Time driven,				
Event driven and Time/Event driven	sequential systems. Statement List, Process	4	0		
timing diagram, Function sequence, Cha	rt, Mode Chart, Start Chart. Case Studies.				
Relay logic and switching algebra L	adder diagram representation of sequential				
systems. Design of elementary sequent	tial systems. Petrinet representation and case	3	0		
studies.					
Memory Interfacing: Memory Map, Ad	dress decoding, word-size expansion, capacity	2	0		
expansion.		Z	0		
Algorithmic Sequential Machines; I	Design of Direct Addressed and Indirect	3	0		
Addressed ROM based Sequential syste	ms, Case Studies.	3	0		
Design of Input Forming Logic of the	State Machine using Direct -Addressed and	3	0		
Indirect Addressed Multiplexers. Case Studies.					
State Assignment for Minimization of	Output Forming Logic. State assignment to				
eliminate output glitches.		3	0		
Microprocessor as an FSM/ASM.					
Microprocessor Architecture: Address	/ Data and Control lines, Timing diagrams,				
Internal registers, Interrupt mechanism	n (Hardware/Software), DMA mechanism -	3	0		
[NB: Study mainly based on Intel 8085	and other popular microprocessors].				
Detailed description of a typical 8-bit M	icroprocessor (preferably 8085).	4	0		
Interfacing with support chips: Program	mable Peripheral Interface (8255),				
Programmable time/counter (8253), Pro	grammable UART (8251),				
Programmable Interrupt Controller (82	59), DMA Controller (8257), Programmable	6	0		
Keyboard and Display Controller (82	79) - signals and timing details along with	0	U		
hardware/software interfacing technique	es. I/O interfaces with switch, multi-segment				
display, ADC/DAC					
Assembly Language Programming o	f 8 bit Microprocessor: Instruction Cycle,				
Machine Cycle, T states. Instruction Set	, addressing modes, stack subroutine, interrupt	5	0		
service routines. Example programs in a	ssembly languages.				
Concept and operation of Assembler and	nd Cross Assembler, Brief overview of 16-bit	2	0		
Microprocessors (Intel, Motorola)		L	U		

Refe	rence Book	5:												
1	Microproce	essor A	rchite	cture,]	Progra	mming	g and a	Applic	ations	with t	he 80	85A/80	80A: R	amesh
	S. Gaonkar	, Wiley	/ Easte	ern Lin	nited.									
2	Digital Log	ic and	State]	Machi	ne Des	ign: D	avid J	. Com	er, Ho	ld, Rin	ehart a	and Wi	nston.	
Cont	ent Deliver	v Metl	nod											
•	Class root	-		alk and	d board	1) (D1)							
•	Visual pre				aooui	(D1)	/							
	Discussio			2)										
	D13003310													
Cour	se Outcom	es:												
The s	students of the	ne cou	se sho	uld be	able to	0								
CO1	Describe	e time/	event	driven	seque	ntial sy	stems	and th	neir im	pleme	ntatio	n using	flip-flo	ps,
	registers				-	•				1		U	1	1 /
CO2	-		-							state	diagra	ms with	n state t	able
	for a giv			-							U			
CO3							essor	and id	entify	the ha	rdwar	e and so	oftware	
	interaction	ons and	l integ	rations	s in a n	nicrop	rocess	or. (K	1)					
CO4	Discuss	the into	erfacin	g of v	arious	periph	eral de	evices	with r	nicrop	rocess	or. (K2)	
CO5														
					-				-					
CO-I	PO Mappin	g (3 –	Strong	3, 2 - N	/lodera	te and	1 – W	/eak)						
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Se	equential	CO1	3	2	1									
	stems &	CO2	3	2										
-	oprocessors	CO3	3	23										
		CO4 CO5	2	3 2	3									
		005	4	4	5									

Course code	EE/PC/B/T/226					
Category	Program Core					
Course title	Field Theory					
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;					
Pre-requisites (if any)						
EE/PC/B/T/226 : Field Theory		L	Т			
Magnetic field intensity, Lorentz force,		2	0			
	e's theorem, Ampere's law in both integral and	2	0			
differential forms,		2	0			
Scalar and Vector magnetic potential	and deduction of Biot-Savart's law and its	2	0			
application for different current configu	iration,	2	U			
Boundary conditions, Solution of field	problem by image method,	1	0			
Self and mutual inductance, Inductance	ce of coaxial cable and two wire transmission	2	0			
lines,		2	0			
Energy in magnetic field, Force due to	magnetic field in magnetic medium.	2	0			
Faraday's Law of electromagnetic indu	ction,	2	0			
Maxwell's field equations, Displacement current density and continuity equation,						
Electromagnetic wave equations in loss	-free and lossy media,	2	0			
Plane and polarized waves and their	propagation as solutions of wave equation,	2	0			
propagation, attenuation and phase con-	stants, intrinsic impedances,	L	0			
Poynting's vector, Poynting's theorem,	Power flow through electromagnetic media,	1	0			
Elements of wave guide and radiating s	ystems (antenna),	1	0			
Diffusion equation for eddy currents an	d skin effect.	1	0			
Electric vector field and scalar potentia	l field; Relation between electric field intensity	1	0			
and electric potential; Interpretation of	potential gradient	1	0			
Field due to point charge; Field due to	uniformly charged ring; Field due to uniformly	2	0			
charged disc.		2	0			
Integral and differential form of Gauss	s's Law; Divergence Theorem; Poisson's and	1	1			
Laplace's Equation.		1	1			
Orthogonal coordinate systems and	vector operators:Cartesian, cylindrical and					
spherical coordinate system. Generali	zed orthogonal curvilinear coordinate system;					
General expression and its converse	ion in Cartesian, cylindrical and spherical	2	1			
coordinate system. Expression of grad	lient, divergence and Laplacian in generalized	2	1			
orthogonal curvilinear coordinate systemetry	ems and its conversion in different coordinate					
systems.						
Analyses of single dielectric configu	rations: Parallel plate, coaxial cylinders and					
concentric spheres.		2	0			
Analyses of multi-dielectric configur	ations: Parallel plate, coaxial cylinders and	4				
concentric spheres.						
Electric polarization: Fundamentals; Si	gnificance of permittivity; Polarization Vector;	2	0			
Homogeneity and isotropy; Dipole mo	ment; Polar and non-polar materials; Field due	-				

to elect	ric dipole	: Elect	ret.											
	ry Cond			veen c	onduc	tor an	d diel	ectric;	; Betv	veen t	wo di	ielectric		
	Uniquene							,					2	0
	mal trans			Expone	ential (transfo	ormatio	on; Lo	garith	mic tr	ansfor	mation;	1	0
Applica	tion in el	ectric	field a	nalysi	s.				0				1	0
Electric	field an	nalysis	by 1	netho	d of i	mages	: Ima	ge of	point	charg	ge in	infinite		
conduc	ting plane	e; Imag	ge of li	ine cha	arge in	infini	te con	ducting	g plane	e; Infii	nite Tv	vo-wire	2	1
Transm	ission Lii	ne; Inf	inite S	ingle-	wire T	ransm	ission	Line.						
Concep	t of nume	erical f	field ca	alculat	ion: Fi	nite D	ifferen	ce Me	thod.				1	1
Refere	nce Book	s:												
	Engineer		ectrom	nagneti	ics: W.	H. Ha	avt							
	Electrom	-		-			<u> </u>							
	Electrom	U					: P. M	ukhopa	adhyay	/				
	Electrom	-		•				1						
Contor	t Doliver		hod											
	t Deliver	-		halls ar	nd haar	rd) (D	1)							
	Class roo				iu doai	(\mathbf{D})	1)							
	Visual pr		tion (1) 2)										
	Tutorial (. ,												
•	Discussio	on (D7)											
Course	Outcom	es:												
The stu	dents of t	he cou	irse sh	ould b	e able	to								
CO1	Recall	the de	finitio	ns of t	he basi	ic quar	ntities	of elec	etric ar	nd mag	gnetic 1	fields ar	nd also	the
	equatio	ns gov	verning	g the re	elation	ship bo	etweer	n sourc	e and	the fie	ld qua	ntities f	or both	
	electric	and n	nagnet	ic field	ds (K1)).								
CO2	Discus	s the e	nergy	contai	ned in	electri	ic and	magne	tic fie	lds exp	olainin	g Maxw	vell's	
	equatio													
CO3	Find th	e bou	ndary	condit	ions ar	nd dem	onstra	te solu	ution te	echniq	ues for	r the ele	ctric ar	ıd
	magnet	ic field	ds and	identi	fy the	differe	ent pra	ctical a	applica	ations	of thes	se techn	iques (l	K3).
CO4	Analyz	e pola	rizatio	n and	losses	in die	lectric	and m	agneti	c mate	erials (K4).		
CO5	Analyz	e Elec	troma	gnetic	waves	and th	neir pr	opagat	ion (K	(4).				
	N/	- (2	C 4	- 0	N			V 1-)						
CO-PC) Mappin	lg(3 -						,	D07	DOG	DOG	DO10	DO11	DO14
	F	CO1	PO1 3	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 1
		CO1 CO2	3	2										1
Field 7	Гһеогу	CO2 CO3	5	2	3	2	3							1
	-	CO4	1	1	2	3	-							1
					1	2	3	2	2		ł	1 1		1

Course code				F	EE/PC	/B/S/2	21						
Category				P	rograr	n Core	•						
Course title				E	Electric	al Eng	gineeri	ng Lal	oorato	ry - II			
Scheme and Cr	edits			L	L-T-P:	0-0-3;	Credi	ts: 1.5	,				
Pre-requisites (if any))											
				•									•
EE/PC/B/S/221			0			•	y - II						Р
1. Study of load	-												3
2. Determination	n of B-	H Loo	p of a	ring sp	pecime	n							3
3. Determination			-	-		-							3
4. Study of trans	ient re	sponse	e of Li	near T	ime In	varian	t syste	ms usi	ing Lir	near S	ystem S	imulato	r 3
5. Study of diffe	rent ch	naracte	ristics	of a D	C Gen	erator							3
6. Parallel opera	tion of	single	phase	e transf	former	S							3
7. Measurement	of Cap	pacitan	ce and	l p.f. o	f a cap	acitor	using	Scheri	ing Bri	idge			3
8. Simulation of	DC di	stribut	or by]	Netwo	rk Ana	lyzer							3
9. Study of Oper	ationa	1 Amp	lifier a	is a coi	mputin	ig elen	nent						3
10. Starting and	speed	contro	l of a l	DC Sh	unt Mo	otor							3
11. Introduction,	, arrear	r and a	ssignn	nent									9
 Active le Blended/ Discussion Case Stute 	Hybric ons (D	d learn 7)	ing (D	5)									
Course Outcom	nes:												
The students of t	the cou	urse sh	ould b	e able	to								
CO1 Identify				-						, S1)			
CO2 Select t													
CO3 Compr			jective	e of the	e expe	riment	and R	elate	that wi	ith the	acquire	ed theor	etical
knowled	0	. ,											
CO4 Develop					-				und oth	ner dev	vices (K	(2, S2)	
CO5 Interpr	et the	data ar	nd prej	pare a	detaile	d repo	ort. (K2	2, A2)					
CO-PO Mappin	ng (3 –		-				r		1		1		
	COL	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Electrical	CO1 CO2	3	2 3	1 2						2			
Engineering	CO2 CO3	1	3	2						2			
Laboratory - II	CO4	1	2	3						2			
	CU4	L	4	5						4			

	e code			E	E/PC/I	B/S/22	2						
Catego	ory			Pr	ogram	Core							
Cours	e title			Ci	rcuits]	Labora	atory						
Schem	e and Credits	5		L-	T-P: 0	-0-3; 0	Credits	: 1.5;					
Pre-re	quisites (if an	y)											
		•. •											5
	C/B/S/222 : Ci			•									P
	action to Circu		•										3
	nsient and freq		-		L-C se	eries C	ircuit						3
	ve Low Pass a												3
	ermination of I	Fourier	Coeffic	cients o	of a Pe	riodic	Signal						3
	pled Circuits												3
	racteristics of		on Tin	ner IC									3
	uction to SPice												6
	era ration of S	U	-	-	•	stems i	in SPic	e					3
	nsformer Equiv												3
8. Circ	uit Realizatior	n of a Ti	ransfer	Functi	ion in S	SPice							3
Assign	iment												6
•	Class room le Demonstratio Active learnin	n (D2)		nu ooa	IU) (D	1)							
Cours	e Outcomes:												
TT1	udents of the c												
I ne stu		ourse sl	10uld b	e able	to								
CO1	Identify the					form t	he exp	erimei	nt (K1,	S1)			
	Identify the Select the ra	instrun	nents re	equired	l to per		-			S1)			
CO1	•	instrun nge/rati	nents re ings of	equired the ins	l to per strume	nts ide	ntified	(K2, S	51)	,	acquire	d theore	etical
CO1 CO2	Select the ra	instrum nge/rati d the o	nents re ings of bjectiv	equired the ins	l to per strume	nts ide	ntified	(K2, S	51)	,	acquire	d theore	etical
CO1 CO2	Select the ratio Comprehent	instrum nge/rat d the o K3, S2)	nents re ings of bjectiv	equired the ins e of the	l to per strumer e exper	nts ide riment	ntified and R	elate t	S1) hat wi	th the	-		etical
CO1 CO2 CO3	Select the ra Comprehen knowledge (instrum nge/rati d the o K3, S2) circuit	nents re ings of bjective duly co	equired the ins e of the	l to per strume e exper ing sele	nts ide riment ected i	ntified and R nstrum	(K2, S elate t nents a	S1) hat wi	th the	-		etical
CO1 CO2 CO3 CO4	Select the ra Comprehent knowledge (Develop the	instrum nge/rati d the o K3, S2) circuit	nents re ings of bjective duly co	equired the ins e of the	l to per strume e exper ing sele	nts ide riment ected i	ntified and R nstrum	(K2, S elate t nents a	S1) hat wi	th the	-		etical
CO1 CO2 CO3 CO4 CO5	Select the ra Comprehent knowledge (Develop the	instrun nge/rati d the o K3, S2) circuit e data a – Stroi	nents re ings of bjective duly co ind pre	equired the ins e of the onnect pare a Moder	l to per strumer e exper ing seld detaile	nts ide riment ected i d repo d 1 – V	ntified and R nstrum rt. (K2 Weak)	(K2, S elate t nents a , A2)	S1) hat wind other	th the er dev	ices (K	2, S2)	etical
CO1 CO2 CO3 CO4 CO5	Select the ra Comprehent knowledge (Develop the Interpret th O Mapping (3	instrum nge/rati d the o K3, S2) circuit e data a – Stron PO1	nents re ings of bjective duly co ind pre ng, 2 – PO2	equired the ins e of the onnect pare a Moder PO3	l to per strumer e exper ing sele detaile	nts ide riment ected i d repo	ntified and R nstrum rt. (K2	(K2, S elate t nents a	S1) hat wi	th the er dev PO9	-		etical
CO1 CO2 CO3 CO4 CO5 CO-PO	Select the ra Comprehen knowledge (Develop the Interpret th O Mapping (3	instrum nge/rati d the o K3, S2) circuit e data a – Stron PO1 3	nents re ings of bjective duly co ind pre ng, 2 – PO2 2	equired the ins e of the onnect pare a Moder PO3 1	l to per strumer e exper ing seld detaile	nts ide riment ected i d repo d 1 – V	ntified and R nstrum rt. (K2 Weak)	(K2, S elate t nents a , A2)	S1) hat wind other	th the er dev PO9 2	ices (K	2, S2)	
CO1 CO2 CO3 CO4 CO5 CO-PO	Select the ra Comprehen knowledge (Develop the Interpret th O Mapping (3 CO1 cuits CO2	instrun nge/rati d the o K3, S2) circuit e data a – Stron PO1 3 1	hents refings of bjective duly co ind pre- hg, $2 -$ PO2 2 3	equired the ins e of the onnect pare a Moder PO3 1 2	l to per strumer e exper ing seld detaile	nts ide riment ected i d repo d 1 – V	ntified and R nstrum rt. (K2 Weak)	(K2, S elate t nents a , A2)	S1) hat wind other	th the er dev PO9 2 2	ices (K	2, S2)	
CO1 CO2 CO3 CO4 CO5 CO-PO	Select the ra Comprehen knowledge (Develop the Interpret th O Mapping (3	instrum nge/rati d the o K3, S2) circuit e data a – Stron PO1 3 1 1	nents re ings of bjective duly co ind pre ng, 2 – PO2 2	equired the ins e of the onnect pare a Moder PO3 1	l to per strumer e exper ing seld detaile	nts ide riment ected i d repo d 1 – V	ntified and R nstrum rt. (K2 Weak)	(K2, S elate t nents a , A2)	S1) hat wind other	th the er dev PO9 2	ices (K	2, S2)	